Issue |
EPL
Volume 94, Number 1, April 2011
|
|
---|---|---|
Article Number | 18001 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/94/18001 | |
Published online | 25 March 2011 |
The effect of pinning on drag in coupled one-dimensional channels of particles
1
Theoretical Division, Los Alamos National Laboratory - Los Alamos, NM 87545, USA
2
Department of Physics, Purdue University - West Lafayette, IN 47907, USA
Received:
16
December
2010
Accepted:
28
February
2011
We consider a simple model for examining the effects of quenched disorder on drag consisting of particles interacting via a Yukawa potential that are placed in two coupled one-dimensional channels. The particles in one channel are driven and experience a drag from the undriven particles in the second channel. In the absence of pinning, for a finite driving force there is no pinned phase; instead, there are two dynamical regimes of completely coupled or locked flow and partially coupled flow. When pinning is added to one or both channels, we find that a remarkably rich variety of dynamical phases and drag effects arise that can be clearly identified by features in the velocity force curves. The presence of quenched disorder in only the undriven channel can induce a pinned phase in both channels. Above the depinning transition, the drag on the driven particles decreases with increasing pinning strength, and for high enough pinning strength, the particles in the undriven channel reach a reentrant pinned phase which produces a complete decoupling of the channels. We map out the dynamic phase diagrams as a function of pinning strength and the density of pinning in each channel. Our results may be relevant for understanding drag coupling in 1D Wigner crystal phases, and the effects we observe could also be explored using colloids in coupled channels produced with optical arrays, vortices in nanostructured superconductors, or other layered systems where drag effects arise.
PACS: 82.70.Dd – Colloids / 05.60.Cd – Classical transport
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.