Issue |
EPL
Volume 96, Number 1, October 2011
|
|
---|---|---|
Article Number | 16002 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Structural, Mechanical and Thermal Properties | |
DOI | https://doi.org/10.1209/0295-5075/96/16002 | |
Published online | 16 September 2011 |
Stretching-enhanced ballistic thermal conductance in graphene nanoribbons
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University Nanjing, 210093, China
Received:
21
June
2011
Accepted:
12
August
2011
We combine the nonequilibrium Green's function method with the elastic theory to investigate the ballistic thermal transport in graphene nanoribbons under homogeneous uniaxial stretching applied in the longitudinal direction. Remarkable enhanced thermal conductance is found for the samples with width in the appropriate range. The enhancement ratios could be up to 17% and 36% for the 5 nm width zigzag and armchair graphene nanoribbons, respectively. This enhancement effect results from a lot of dispersive phonon modes which are converged to the low-frequency region. In addition, the transverse shrinkage induced by the Poisson effect is beneficial for enhancing thermal conductance, while the transverse stretching has only a modest modification on thermal conductance. It is also observed that for 2.6 nm width nanoribbons the power-law temperature dependence, Tβ, of thermal conductance at low temperatures is independent of strain, with β=1 below a critical temperature about 10 K and β≃2 at 20 K ≤ T ≤ 50 K, which differ markedly from β=1.5 in the two-dimensional case. Moreover, above the critical width 11 nm, the armchair nanoribbon displays higher phonon thermal conductance than the same-width zigzag nanoribbon.
PACS: 65.80.Ck – Thermal properties of graphene / 62.20.D- – Elasticity
© EPLA, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.