Issue |
EPL
Volume 97, Number 6, March 2012
|
|
---|---|---|
Article Number | 67001 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/97/67001 | |
Published online | 13 March 2012 |
Spin transport in the XXZ model at high temperatures: Classical dynamics vs. quantum S=1/2 autocorrelations
J. Stefan Institute - Jamova 39, SI-1000 Ljubljana, Slovenia, EU
Received:
6
November
2011
Accepted:
10
February
2012
The transport of magnetization is analyzed for the classical Heisenberg chain at and especially above the isotropic point. To this end, the Hamiltonian equations of motion are solved numerically for initial states realizing harmonic-like magnetization profiles of small amplitude and with random phases. Above the isotropic point, the resulting dynamics is observed to be diffusive in a hydrodynamic regime starting at comparatively small times and wave lengths. In particular, hydrodynamic regime and diffusion constant are both found to be in quantitative agreement with close-to-equilibrium results from quantum S=1/2 autocorrelations at high temperatures. At the isotropic point, the resulting dynamics turns out to be non-diffusive at the considered times and wave lengths.
PACS: 75.10.Pq – Spin chain models / 05.60.Cd – Classical transport / 05.60.Gg – Quantum transport
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.