Issue |
EPL
Volume 98, Number 2, April 2012
|
|
---|---|---|
Article Number | 28004 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/98/28004 | |
Published online | 30 April 2012 |
Evaluating network models: A likelihood analysis
1
Web Sciences Center, School of Computer Science and Technology, University of Electronic Science and Technology of China - 610054 Chengdu, PRC
2
Beijing Computational Science Research Center - Beijing 100089, PRC
Received:
21
December
2011
Accepted:
16
March
2012
Many models are put forward to mimic the evolution of real networked systems. A well-accepted way to judge the validity is to compare the modeling results with real networks subject to several structural features. Even for a specific real network, we cannot fairly evaluate the goodness of different models since there are too many structural features while there is no criterion to select and assign weights on them. Motivated by the studies on link prediction algorithms, we propose a unified method to evaluate the network models via the comparison of the likelihoods of the currently observed network driven by different models, with an assumption that the higher the likelihood is, the more accurate the model is. We test our method on the real Internet at the Autonomous System (AS) level, and the results suggest that the Generalized Linear Preferential (GLP) model outperforms the Tel Aviv Network Generator (Tang), while both two models are better than the Barabási-Albert (BA) and Erdös-Rényi (ER) models. Our method can be further applied in determining the optimal values of parameters that correspond to the maximal likelihood. The experiment indicates that the parameters obtained by our method can better capture the characters of newly added nodes and links in the AS-level Internet than the original methods in the literature.
PACS: 89.75.Fb – Structures and organization in complex systems / 05.40.Fb – Random walks and Levy flights / 89.75.Da – Systems obeying scaling laws
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.