Issue |
EPL
Volume 98, Number 2, April 2012
|
|
---|---|---|
Article Number | 28003 | |
Number of page(s) | 5 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/98/28003 | |
Published online | 24 April 2012 |
Degree heterogeneity in spatial networks with total cost constraint
Department of Physics, University of Fribourg - Chemin du Musée 3, CH-1700 Fribourg, Switzerland
Received:
12
December
2011
Accepted:
22
March
2012
Recently, Li et al. (Phys. Rev. Lett., 104 (2010) 018701) studied a spatial network which is constructed from a regular lattice by adding long-range edges (shortcuts) with probability Pij∼rij− α, where rij is the Manhattan length of the long-range edges. The total length of the additional edges is subject to a cost constraint (). This spatial network model displays an optimal exponent α for transportation (measured by the average shortest-path length). However, we observe that the degree in such spatial networks is homogeneously distributed, which is different from some real networks. In this letter, we propose a method to introduce degree heterogeneity in spatial networks with total cost constraint. Results show that with degree heterogeneity the optimal exponent shifts to a smaller value and the average shortest-path length can further decrease. Moreover, we find the optimal degree heterogeneity for transportation. We further consider the synchronization on the spatial networks and related results are discussed. Our new model may better explain the features of real transportation systems.
PACS: 89.75.Hc – Networks and genealogical trees / 05.45.Xt – Synchronization; coupled oscillators / 89.75.-k – Complex systems
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.