Issue |
EPL
Volume 102, Number 1, April 2013
|
|
---|---|---|
Article Number | 14002 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/102/14002 | |
Published online | 25 April 2013 |
Granular Brownian motion with dry friction
1 CNR-ISC and Dipartimento di Fisica, Universit`a Sapienza - p.le A. Moro 2, 00185, Roma, Italy, EU
2 School of Mathematical Sciences, Queen Mary University of London - London E1 4NS, UK, EU
Received: 4 February 2013
Accepted: 25 March 2013
The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a “heat bath” for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.
PACS: 45.70.-n – Granular systems / 05.20.Dd – Kinetic theory / 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.