Issue |
EPL
Volume 111, Number 4, August 2015
|
|
---|---|---|
Article Number | 40012 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/111/40012 | |
Published online | 10 September 2015 |
Entropy production for velocity-dependent macroscopic forces: The problem of dissipation without fluctuations
Istituto dei Sistemi Complessi - CNR and Dipartimento di Fisica, Università di Roma Sapienza P.le Aldo Moro 2, 00185, Rome, Italy
Received: 5 May 2015
Accepted: 14 August 2015
In macroscopic systems, velocity-dependent phenomenological forces F(v) are used to model friction, feedback devices or self-propulsion. Such forces usually include a dissipative component which conceals the fast energy exchanges with a thermostat at the environment temperature T, ruled by a microscopic Hamiltonian H. The mapping —even if effective for many purposes— may lead to applications of stochastic thermodynamics where an incomplete fluctuating entropy production (FEP) is derived. An enlighting example is offered by recent macroscopic experiments where dissipation is dominated by solid-on-solid friction, typically modelled through a deterministic Coulomb force F(v). Through an adaptation of the microscopic Prandtl-Tomlinson model for friction, we show how the FEP is dominated by the heat released to the T-thermostat, ignored by the macroscopic Coulomb model. This problem, which haunts several studies in the literature, cannot be cured by weighing the time-reversed trajectories with a different auxiliary dynamics: it is only solved by a more accurate stochastic modelling of the thermostat underlying dissipation.
PACS: 05.70.Ln – Nonequilibrium and irreversible thermodynamics / 05.10.Gg – Stochastic analysis methods (Fokker-Planck, Langevin, etc.)
© EPLA, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.