Issue |
EPL
Volume 108, Number 5, December 2014
|
|
---|---|---|
Article Number | 50005 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/108/50005 | |
Published online | 05 December 2014 |
Maximal correlation between flavor entanglement and oscillation damping due to localization effects
Departamento de Física, Universidade Federal de São Carlos - PO Box 676, 13565-905, São Carlos, SP, Brasil
(a) vbittencourt@df.ufscar.br
(b) villasboas@ufscar.br
(c) alexeb@ufscar.br
Received: 19 September 2014
Accepted: 16 November 2014
Localization effects and quantum decoherence driven by the mass-eigenstate wave packet propagation are shown to support a statistical correlation between quantum entanglement and damped oscillations in the scenario of three-flavor quantum mixing for neutrinos. Once the mass-eigenstates that support flavor oscillations are identified as three-qubit modes, a decoherence scale can be extracted from correlation quantifiers, namely the entanglement of formation and the logarithmic negativity. Such a decoherence scale is compared with the coherence length of damped oscillations. Damping signatures exhibited by flavor transition probabilities as an effective averaging of the oscillating terms are then explained as owing to loss of entanglement between mass modes involved in the relativistic propagation.
PACS: 03.65.Yz – Decoherence; open systems; quantum statistical methods / 14.60.Pq – Neutrino mass and mixing / 03.65.Ta – Foundations of quantum mechanics; measurement theory
© EPLA, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.