Issue |
EPL
Volume 110, Number 6, June 2015
|
|
---|---|---|
Article Number | 60005 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/110/60005 | |
Published online | 09 July 2015 |
A multiscale molecular dynamics allowing macroscale mechanical loads
Department of Civil and Environmental Engineering, University of California - Berkeley, CA 94720, USA
Received: 13 April 2015
Accepted: 16 June 2015
We proposed a novel multiscale molecular-dynamics model in order to apply macroscale boundary conditions to microscale molecular systems, which is difficult for classical molecular dynamics. Unlike in statistical mechanics, in which macroscale quantities such as temperature and pressure are collected from molecular information, the proposed approach is a reversed procedure to find optimal molecular states when macroscale conditions such as traction are enforced. The model is originated from Parrinello-Rahman molecular dynamics but extends it to solve finite-size, inhomogeneous molecular-dynamics problems by generalizing the representative volume element to a “material point” in continuum mechanics. An example of compressing a nickel nanowire is presented to demonstrate the capacity of the method to simulate localized phase transition in a finite-size molecular system, which validates the effectiveness of the method.
PACS: 02.70.Ns – Molecular dynamics and particle methods / 07.05.Tp – Computer modeling and simulation / 46.05.+b – General theory of continuum mechanics of solids
© EPLA, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.