Issue |
EPL
Volume 115, Number 5, September 2016
|
|
---|---|---|
Article Number | 50006 | |
Number of page(s) | 5 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/115/50006 | |
Published online | 13 October 2016 |
Memory in random bouncing ball dynamics
Laboratoire de Tribologie et Dynamique des Systèmes, UMR5513, CNRS/Ecole Centrale de Lyon/Univ Lyon/ENISE/ENTPE - 36 Avenue Guy de Collongue, F-69134 Ecully, France
Received: 13 July 2016
Accepted: 20 September 2016
The bouncing of an inelastic ball on a vibrating plate is a popular model used in various fields, from granular gases to nanometer-sized mechanical contacts. For random plate motion, so far, the model has been studied using Poincaré maps in which the excitation by the plate at successive bounces is assumed to be a discrete Markovian (memoryless) process. Here, we investigate numerically the behaviour of the model for continuous random excitations with tunable correlation time. We show that the system dynamics are controlled by the ratio of the Markovian mean flight time of the ball and the mean time between successive peaks in the motion of the exciting plate. When this ratio, which depends on the bandwidth of the excitation signal, exceeds a certain value, the Markovian approach is appropriate; below, memory of preceding excitations arises, leading to a significant decrease of the jump duration; at the smallest values of the ratio, chattering occurs. Overall, our results open the way for uses of the model in the low-excitation regime, which is still poorly understood.
PACS: 05.45.-a – Nonlinear dynamics and chaos / 02.50.-r – Probability theory, stochastic processes, and statistics
© EPLA, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.