Issue |
EPL
Volume 115, Number 5, September 2016
|
|
---|---|---|
Article Number | 50007 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/115/50007 | |
Published online | 14 October 2016 |
Reversible feedback confinement
1 Departamento de Física Atómica, Molecular y Nuclear and GISC, Universidad Complutense Madrid 28040 Madrid, Spain
2 Department of Physics, Physics of Living Systems, Massachusetts Institute of Technology Cambridge, MA 02139, USA
Received: 20 July 2016
Accepted: 22 September 2016
We present a feedback protocol that is able to confine a system to a single micro-state without heat dissipation. The protocol adjusts the Hamiltonian of the system in such a way that the Bayesian posterior distribution after measurement is in equilibrium. As a result, the whole process satisfies feedback reversibility —the process is indistinguishable from its time reversal— and assures the lowest possible dissipation for confinement. In spite of the whole process being reversible it can surprisingly be implemented in finite time. We illustrate the idea with a Brownian particle in a harmonic trap with increasing stiffness and present a general theory of reversible feedback confinement for systems with discrete states.
PACS: 05.70.Ln – Nonequilibrium and irreversible thermodynamics / 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion / 05.70.-a – Thermodynamics
© EPLA, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.