Issue |
EPL
Volume 128, Number 4, November 2019
|
|
---|---|---|
Article Number | 40002 | |
Number of page(s) | 7 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/128/40002 | |
Published online | 20 January 2020 |
Aging transition in weighted homogeneous and heterogeneous networks
Physics and Applied Mathematics Unit, Indian Statistical Institute - Kolkata 700108, India
Received: 25 October 2019
Accepted: 21 November 2019
A network consisting of active and inactive dynamical units experiences aging transition as the number of inactive nodes in the network is increased gradually. In this work, we investigate aging transition by exploring the tenacity of network's global oscillation, implemented by considering a weighted network, while the weights are chosen randomly from a uniform distribution. We examine how the critical transition point from oscillatory to non-oscillatory dynamics changes as the width of the distribution is varied. Exact value of the parameter at which the transition occurs is derived analytically, and interestingly it is found to be dependent on the mean weight of the network. Moreover, we observe a correlation between the results for weighted and unweighted cases. The analysis is performed for both Stuart-Landau limit cycle oscillator network and chaotic Hindmarsh-Rose neuronal network organized in the framework of global (homogeneous) and scale-free (heterogeneous) architectures.
PACS: 05.45.Xt – Synchronization; coupled oscillators / 89.75.-k – Complex systems / 89.75.Fb – Structures and organization in complex systems
© EPLA, 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.