Issue |
EPL
Volume 137, Number 5, March 2022
|
|
---|---|---|
Article Number | 56002 | |
Number of page(s) | 7 | |
Section | Condensed matter and materials physics | |
DOI | https://doi.org/10.1209/0295-5075/ac5fce | |
Published online | 06 May 2022 |
Quantum oscillatory interaction between isovalent centers in semiconductors
Department of Physics, The Chinese University of Hong Kong - Shatin, Hong Kong SAR, China
(a) jyzhu@phy.cuhk.edu.hk (corresponding author)
Received: 10 May 2021
Accepted: 22 March 2022
Interaction between isovalent centers is of great interest in device physics. We discovered a quantum oscillatory interaction based on the first principles calculations of two identical isovalent centers in C/Ge/Sn co-doped Si. The interaction is explained by Green's function's analysis and the linear combination of atomic orbitals (LCAO) method. One point defect interacts with another by a product between the defect potentials and the summation term that characterizes the metallization process of the host lattice. The trend of the oscillation is an intrinsic property of the host. The interaction mechanism is further verified by the calculations of the isovalent pairs with different elements. Our works shed light on the precise control of defects in semiconductors.
© 2022 EPLA
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.