Issue |
EPL
Volume 81, Number 2, January 2008
|
|
---|---|---|
Article Number | 20005 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/81/20005 | |
Published online | 14 December 2007 |
Transient termination of spiking by noise in coupled neurons
1
Group for Neural Theory, Départment des Etudes Cognitives, Ecole Normale Supérieure, Collège de France 5, rue d'Ulm, 75005 Paris, France
2
Max Planck Institute for Mathematics in the Sciences - Inselstr. 22, 04103 Leipzig, Germany
Received:
11
September
2007
Accepted:
16
November
2007
We examine the effects of stochastic input currents on the firing behavior of two
excitable neurons, coupled with fast excitatory synapses. In such cells
(models), typified by the quadratic integrate and fire model, mutual synaptic
coupling can cause sustained firing or oscillatory behavior which is necessarily
antiphase. Additive Gaussian white noise can transiently terminate the oscillations by moving the dynamics away from the stable limit
cycle. Further application of the noise may return the system to spiking activity. When the noise is sufficiently weak, the durations of the times spent in
the oscillating and the resting states are strongly asymmetric. Hence weak noise tends to stop the spiking activity. When the noise
is stronger, the periods of cessation of activity tend to be smaller. We numerically investigate an approximate
basin of attraction, , of the periodic orbit and use Markov process theory to explain the
firing behavior in terms of the probability of escape of trajectories from
.
PACS: 05.40.Ca – Noise / 84.35.+i – Neural networks / 87.16.Ac – Theory and modeling; computer simulation
© EPLA, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.