Issue |
EPL
Volume 87, Number 5, September 2009
|
|
---|---|---|
Article Number | 54006 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/87/54006 | |
Published online | 23 September 2009 |
Quantum turbulence at finite temperature: The two-fluids cascade
1
Institut Néel, CNRS/UJF - BP166, F-38042 Grenoble Cedex 9, France, EU
2
School of Mathematics and Statistics, Newcastle University - Newcastle upon Tyne NE1 7RU, UK, EU
3
Laboratoire de Physique, ENS Lyon, CNRS/Université de Lyon - F-69364 Lyon, France, EU
Received:
14
May
2009
Accepted:
25
August
2009
To model isotropic homogeneous quantum turbulence in superfluid helium, we have performed Direct Numerical Simulations (DNS) of two fluids (the normal fluid and the superfluid) coupled by mutual friction. We have found evidence of strong locking of superfluid and normal fluid along the turbulent cascade, from the large scale structures where only one fluid is forced down to the vorticity structures at small scales. We have determined the residual slip velocity between the two fluids, and, for each fluid, the relative balance of inertial, viscous and friction forces along the scales. Our calculations show that the classical relation between energy injection and dissipation scale is not valid in quantum turbulence, but we have been able to derive a temperature-dependent superfluid analogous relation. Finally, we discuss our DNS results in terms of the current understanding of quantum turbulence, including the value of the effective kinematic viscosity.
PACS: 47.37.+q – Hydrodynamic aspects of superfluidity; quantum fluids / 47.27.ek – Direct numerical simulations / 47.27.Gs – Isotropic turbulence; homogeneous turbulence
© EPLA, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.