Issue |
EPL
Volume 107, Number 3, August 2014
|
|
---|---|---|
Article Number | 37002 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/107/37002 | |
Published online | 28 July 2014 |
Noise-enhanced spontaneous chaos in semiconductor superlattices at room temperature
Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid - Avenida de la Universidad 30, 28911 Leganés, Spain
Received: 3 June 2014
Accepted: 9 July 2014
Physical systems exhibiting fast spontaneous chaotic oscillations are used to generate high-quality true random sequences in random number generators. The concept of using fast practical entropy sources to produce true random sequences is crucial to make storage and transfer of data more secure at very high speeds. While the first high-speed devices were chaotic semiconductor lasers, the discovery of spontaneous chaos in semiconductor superlattices at room temperature provides a valuable nanotechnology alternative. Spontaneous chaos was observed in 1996 experiments at temperatures below liquid nitrogen. Here we show spontaneous chaos at room temperature appears in idealized superlattices for voltage ranges where sharp transitions between different oscillation modes occur. Internal and external noises broaden these voltage ranges and enhance the sensitivity to initial conditions in the superlattice snail-shaped chaotic attractor thereby rendering spontaneous chaos more robust.
PACS: 73.21.Cd – Superlattices / 05.45.-a – Nonlinear dynamics and chaos / 72.70.+m – Noise processes and phenomena
© EPLA, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.